Clinical/Translational Research H2O2-Induced Dilation in Human Coronary Arterioles: Role of Protein Kinase G Dimerization and Large-Conductance Ca -Activated K Channel Activation
نویسندگان
چکیده
Rationale: Hydrogen peroxide (H2O2) serves as a key endothelium-derived hyperpolarizing factor mediating flowinduced dilation in human coronary arterioles (HCAs). The precise mechanisms by which H2O2 elicits smooth muscle hyperpolarization are not well understood. An important mode of action of H2O2 involves the oxidation of cysteine residues in its target proteins, including protein kinase G (PKG)-I , thereby modulating their activities. Objective: Here we hypothesize that H2O2 dilates HCAs through direct oxidation and activation of PKG-I leading to the opening of the large-conductance Ca -activated K (BKCa) channel and subsequent smooth muscle hyperpolarization. Methods and Results: Flow and H2O2 induced pressure gradient/concentration-dependent vasodilation in isolated endothelium-intact and -denuded HCAs, respectively. The dilation was largely abolished by iberiotoxin,
منابع مشابه
H2O2-Induced Dilation in Human Coronary Arterioles: Role of Protein Kinase G Dimerization and Large-Conductance Ca -Activated K Channel Activation
Rationale: Hydrogen peroxide (H2O2) serves as a key endothelium-derived hyperpolarizing factor mediating flowinduced dilation in human coronary arterioles (HCAs). The precise mechanisms by which H2O2 elicits smooth muscle hyperpolarization are not well understood. An important mode of action of H2O2 involves the oxidation of cysteine residues in its target proteins, including protein kinase G (...
متن کاملH2O2-induced dilation in human coronary arterioles: role of protein kinase G dimerization and large-conductance Ca2+-activated K+ channel activation.
RATIONALE Hydrogen peroxide (H(2)O(2)) serves as a key endothelium-derived hyperpolarizing factor mediating flow-induced dilation in human coronary arterioles (HCAs). The precise mechanisms by which H(2)O(2) elicits smooth muscle hyperpolarization are not well understood. An important mode of action of H(2)O(2) involves the oxidation of cysteine residues in its target proteins, including protei...
متن کاملContribution of KV1.5 Channel to Hydrogen Peroxide-Induced Human Arteriolar Dilation and Its Modulation by Coronary Artery Disease.
RATIONALE Hydrogen peroxide (H2O2) regulates vascular tone in the human microcirculation under physiological and pathophysiological conditions. It dilates arterioles by activating large-conductance Ca2+-activated K+ channels in subjects with coronary artery disease (CAD), but its mechanisms of action in subjects without CAD (non-CAD) when compared with those with CAD remain unknown. OBJECTIVE...
متن کاملActivation of endothelial TRPV4 channels mediates flow-induced dilation in human coronary arterioles: role of Ca entry and mitochondrial ROS signaling
Bubolz AH, Mendoza SA, Zheng X, Zinkevich NS, Li R, Gutterman DD, Zhang DX. Activation of endothelial TRPV4 channels mediates flow-induced dilation in human coronary arterioles: role of Ca entry and mitochondrial ROS signaling. Am J Physiol Heart Circ Physiol 302: H634–H642, 2012. First published December 2, 2011; doi:10.1152/ajpheart.00717.2011.—In human coronary arterioles (HCAs) from patient...
متن کاملMechanism of vasodilation to adenosine in coronary arterioles from patients with heart disease.
Adenosine is a key myocardial metabolite that elicits coronary vasodilation in a variety of pathophysiological conditions. We examined the mechanism of adenosine-induced vasodilation in coronary arterioles from patients with heart disease. Human coronary arterioles (HCAs) were dissected from pieces of the atrial appendage obtained at the time of cardiac surgery and cannulated for the measuremen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012